Delayed action insecticides and their role in mosquito and malaria control
Theoretical Biology Seminar
Meeting Details
For more information about this meeting, contact Timothy Reluga, Carina Curto.
Speaker: Rongsong Liu, University of Wyoming
(Host: Tim Reluga)
Abstract: There is considerable interest in the management of insecticide resistance in mosquitoes. One possible approach to slowing down the evolution of resistance is to use late-life-acting (LLA) insecticides that selectively kill only the old mosquitoes that transmit malaria, thereby reducing selection pressure favoring resistance. In this project we consider an age-structured compartmental model for malaria with two mosquito strains that differ in resistance to insecticide, using a compartmental model to describe malaria in the mosquitoes and thereby incorporating the parasite developmental times for the two strains. The human population is modeled using a susceptible-exposed-infected compartmental model. We consider both conventional insecticides that target all adult mosquitoes, and LLA insecticides that target only old mosquitoes. According to linearised theory the potency of the insecticide affects mainly the speed of evolution of resistance. Mutations that confer resistance can also affect other parameters such as mean adult life span and parasite developmental time. For both conventional and LLA insecticides the stability of the malaria-free equilibrium, with only the resistant mosquito strain present, depends mainly on these other parameters. This suggests that the main long term role of an insecticide could be to induce genetic changes that have a desirable effect on a vital parameter such as adult life span. However, when this equilibrium is unstable, numerical simulations suggest that a potent LLA insecticide can slow down the spread of malaria in humans but that the timing of its action is very important.
Room Reservation Information
Room Number: 106 McAllister
Date: 04/07/2015
Time: 1:00pm - 2:00pm